B.C. solar power: Bacteria powered solar cells

It provides 10,000 times the amount of energy we use on Earth every day. It’s free, it’s plentiful, it’s super-clean and safe—and it’s everywhere. The sun may well be our best friend in the face of our fossil-fuelled climate emergency, if only we harnessed it more.

Right now, dozens of countries around the world—China, Japan, Germany, France, the U.S. and U.K., Italy, India, even tiny Latvia, and more—depend on solar power to some extent. Here in Canada, Alberta and Ontario are our solar leaders—Alberta with 25 per cent more sunlight than the heartland of Canada’s solar capacity, Ontario, where solar power has proven to be a welcome addition to a power grid that often fails and where people have tired of throwing out the food in their freezers over and over.

Now, that picture could change with more—and more unexpected—places jumping on the solar express thanks to an exciting new innovation developed by researchers at Vancouver’s University of British Columbia (UBC), ranked the No. 1 campus in the world for taking urgent action on the climate crisis.

They’ve come up with a low-cost, sustainable biogenic solar cell made with dye-producing bacteria. It works as well in dim light, like cloudy or overcast skies, as in bright light, like full sun. Even in early stages, the cell generated an electrical current twice as strong as any from similar devices, its capacity is constantly being increased.

 Biogenic solar cells using dye have been produced before, but they entail costly, complex processes that use toxic solvents to extract the dye, plus the dye can be lost making the cells less effective.

(“Biogenic” simply means something made of or produced by living organisms, in this case E. colibacteria that have been engineered to produce lycopene, a natural dye that gives tomatoes and other red fruits and vegetables their colour. Lycopene is also very good at “harvesting” light and turning it into electrical energy. E. coli are used because they’re one of the most productive and versatile bacteria in the lab—and, no, this isn’t the type that makes you sick.)

The new UBC approach leaves the dye in place, which makes it higher yielding and about 10 times cheaper. It also uses a nano-coating of titania (or titanium dioxide) to enhance electrical production. The same titanium dioxide used to tint white the acrylic paints in your art studio, it’s an excellent conductor.

The result? Bacteria-powered solar cells that are more economical and efficient than comparable biogenic systems, and certainly more organic and sustainable than conventional solar cells made with things like silicone, hydrochloric acid and unrenewable metals, such as platinum.

“It was a shot in the dark, and serendipity helped us a bit,” says Vikramaditya Yadav, a professor in UBC’s chemical and biological engineering department and the project lead.

Drawing on his own research in bioactive materials and dyes at Harvard and MIT was critical, but Yadav credits most of the serendipity to the creativity and complementary backgrounds of the talented five-person team of graduate students and scientists who comprise his BioFoundry research group, which specializes in collaborating with local start-ups, industry and other researchers on creative, bioengineered solutions using bacteria.

To view the full original article, click here: https://www.kamloopsmatters.com/local-news/bc-solar-power-bacteria-powered-solar-cells-are-perfect-for-cloudy-days-1498067